Manual transmission diagram

Manual transmission diagram DEFAULT

Things you need to know about manual transmission system

The manual transmission which is also known as the gearbox is a standard transmission. It is also called a stick shift or simply stick as well as the gearbox. The transmission system is used in motor vehicle applications.

Car with manual transmission

A manual transmission is the oldest transmission used in automobile till date. It uses a driver-operated clutch for engagement and disengagement via the foot pedal. It can also be done using hand lever along with a gear selector which is operated by hands. This regulates torque transfer from the engine to the transmission.

Read Everything you need to know about differential

The gearbox system is conventionally designed with 5- or 6-speed manual transmission. It is standard in a modern base modern vehicle. The 5-speed types are common on commercial vehicles and lower-end vehicles.

Higher-end vehicles like luxury and sports cars feature the 6-speed transmission for the base model. There are also other choices of transmission available.

Below is the diagram of manual transmission:

Diagram of a manual transmission


Types of Manual Transmission 

below are the types of manual transmission:

Sliding-gear transmission:

These types of manual transmission are known as unsynchronized transmission. It was invented in the late 19th century which is why they are found on older model cars. When staying stationary when the transmission is neutral. In the transmission case, the main drive gear and cluster gear keep moving.

The clutch pedal must be press in order to free to shifter handle. Shifter handles changes the position of the shift linkage and forks and slides a gear to a main-shaft.  The clutch is released once the gears meshed.

Constant-Mesh Transmission:

These types of transmission are known as synchronized transmission. The drive gear, cluster gear and main shaft gears in constant motion. this happens because the gears freely spin around the main shaft.

Sliding gear transmission is used to lock gears in place. A dog clutch also helps to lock these gears in place when needed. Teeth on the dog clutch and main shaft gears lock onto each other and hold the gear stationary. This occurs as the shift linkage moves.

The synchronizers are used in this transmission to prevent clashing or grinding while changing gears.

Read Everything you need to know about automobile clutch

Preselector manual Transmission:

This manual transmission system was also developed before the invention of automatic transmission. It is known as the Wilson preselector, introduced in 1930.

The transmission uses a planetary gear system to preselect gear ratio. A small lever on the steering column is used. Drivers shift gears by pressing down the foot pedal that notifies one of the preselected gears.

The previous gear disengaged immediately the new gear engages.

Parts of the manual transmission system and their functions

Below are parts of manual transmission and their functions:

  • Clutch disc; allows the torque to be transmitted from the engine to the manual transmission system. This disc works when the clutch pedal is pressed.
  • Clutch pedal: is a manual transmission part that is operated hydraulically. it controls the clutch disc when pressed by foot.
  • Synchronizers: synchronizers allow the engagement between the collar and the gear. It makes the speed to be synchronized. The speed could end up being different but it prevents that from happening.
  • Flywheel: The flywheel is one of the major parts in manual transmission that send torque from the engine to the clutch disc.
  • Gears: gears in the transmission is of different sizes of big and small. The big gears generate extra torque to slow down the speed of the vehicle. Smaller gears generate less torque making the vehicle to move faster.
  • Selector fork: is a gear that allows the collars to move on the output shaft.
  • Stick shift: this manual transmission part is used for applying the gear via hand. It is connected to the gearbox.
  • Collar: collars are used to lock the selected gear in place and allow the torque to past to the output shaft.

How manual transmission works

The working of  this transmission system contains a set of gears along with a pair of shafts which is the input and output shafts. The gear on the first shaft engages with those on the other shaft. The ratio between the selected gear on the input shaft and the gear engaged on the output shaft determines the overall gear ratio for that gear.

Gears are engaged in manual transmission system by moving the shift lever. The engagement is done by the linkages that control the movement of the gears along the input shaft. Cars with four gears or speed have two linkages and cars with five or six speeds has uses three linkages. This linkages changes by moving the shift lever left and right.

Clutch plays an important role in the working of the manual transmission as disconnect the engine from the input shaft of the transmission when pressed. It frees the gears on the input shaft causing it to easily move as the engine is sending torque through the input shaft. This caused the engagement. The clutch is said to be disconnected when the clutch lever is not press. Once the clutch disconnects the power from the engine to the transmission, the driver easily selects the gear and release the clutch. Releasing the clutch allowed engine power to be reengaged to the input shaft which makes the car to move at the selected gear ratio.

Join our Newsletter

The video below contains how the manual transmission system works:

That’s it for this article “Manual Transmission system”. I hope you enjoyed the reading, if so, kindly comment, share and recommend this site to other technical students.


How Manual Transmissions Work

Four-speed manual transmissions are largely outdated, with five- and six-speed transmissions taking their place as the more common options. Some performance cars may offer even more gears. However, they all work more or less the same, regardless of the number of gears. Internally, it looks something like this:

There are three forks controlled by three rods that are engaged by the shift lever. Looking at the shift rods from the top, they look like this in reverse, first and second gear:

Keep in mind that the shift lever has a rotation point in the middle. When you push the knob forward to engage first gear, you are actually pulling the rod and fork for first gear back.

You can see that as you move the shifter left and right you are engaging different forks (and therefore different collars). Moving the knob forward and backward moves the collar to engage one of the gears.

Reverse gear is handled by a small idler gear (purple). At all times, the blue reverse gear in this diagram above is turning in a direction opposite to all of the other blue gears. Therefore, it would be impossible to throw the transmission into reverse while the car is moving forward; the dog teeth would never engage. However, they will make a lot of noise.


Manual transmissions in modern passenger cars use synchronizers, or synchros, to eliminate the need for double-clutching. A synchro's purpose is to allow the collar and the gear to make frictional contact before the dog teeth make contact. This lets the collar and the gear synchronize their speeds before the teeth need to engage, like this:

The cone on the blue gear fits into the cone-shaped area in the collar, and friction between the cone and the collar synchronize the collar and the gear. The outer portion of the collar then slides so that the dog teeth can engage the gear.

Every manufacturer implements transmissions and synchros in different ways, but this is the general idea.

  1. Mlp episode 200
  2. Ryobi paint sprayer
  3. Duke nukem 3d guide
  4. Premier tile grass valley
  5. 2012 cadillac escalade

Leith Cars Blog

Gearbox and clutch cross-section

Your car’s transmission is among its most vital elements. It connects the engine to the drivetrain and governs how much power you use from moment to moment. Yet for most people, it’s a complete mystery how it works. The prominence of automatic transmissions has lessened the need to understand how this magical box beneath our feet functions. We’re more than willing to let the computers handle it so we can keep our focus elsewhere (hopefully on the road itself).

At Leith, we think there’s a lot to be said for understanding the basic functions of your car. In many instances, it can help you take better care of your vehicle, which hopefully means it will last longer. In this series, we’re going to teach you the basics of how a transmission works. First we’ll cover how a manual transmission works, then we’ll talk about how automatic transmissions work, and finally we’ll compare the two, discussing the pros and cons of each.

How does a manual transmission work?

If you’ve driven a car with manual transmission, or if you’ve ridden in a manual transmission car, or if you’ve seen a decent action movie with a car chase scene (no one drives automatics in movies), then you know about the clutch pedal and the gear shifter. These are the two inputs by which a driver operates a manual transmission, though if we’re being technical the shifter is the only piece of this whole puzzle that is operated manually (i.e. by hand).

Gearbox and clutch cross-section

Underneath all that is what appears to be an elaborate mechanism – a whirring array of shafts and gears that somehow translate into forward (or reversed) momentum. Though the diagrams might be intimidating, a transmission is a deceptively simple piece of machinery. All you have to do is break it down into its basic components.

What is the clutch?

The transmission housing contains three shafts interacting with one another. One of them is attached to the engine (the input shaft), one is attached to the differential (the output shaft), and the third shaft, often called the layshaft or the countershaft, interacts with the other two via a system of gears. While your car is on, the engine shaft is always turning, even while stopped. It has to keep going otherwise the engine doesn’t work.

When you step on the clutch pedal, you’re activating the friction clutch, which is situated between the engine’s flywheel and the input shaft. The purpose of the clutch is to decouple the engine from the transmission. While the pedal is depressed, the engine and the transmission both continue to spin, but they spin independently of one another, with no torque transferring from the engine to the gearbox. This is what enables you to change gears. Without a friction clutch and a means to decouple these two systems, everything would break.

Because it uses friction to operate, if you keep your car long enough, you’ll wind up needing to replace the clutch. It’s similar to replacing brake pads, wherein the friction materials simply wear down over time. You can extend the life of your clutch if you’ve had plenty of practice with manuals and can avoid abrupt shifting and aggressive driving.

What happens when I move the gear shifter?

gear shift lever

The countershaft and the output shaft interact via a system of interlocking gears. The difference between these is the gears on the countershaft are fixed and spin with the shaft itself, while the gears on the output shaft are not fixed and spin freely without turning the shaft. This allows the car to idle in neutral without moving forward. The gears themselves are paired in different sizes, creating different gear ratios. The exact ratios vary, but you will know them more commonly as first gear, second gear, and so on.

The gear shifter is responsible for physically engaging the gears on the output shaft, locking them in place so that they turn the shaft and send torque to the drive wheels. This is where visuals are really useful.

Moving the shifter into position engages the gear selector forks. Those forks are in turn connected to a series of dog clutches (not to be confused with the friction clutch) that are responsible for actuating each gear.

Modern transmissions are equipped with synchronization systems that prevent the teeth of the dog clutch from scraping against a gear that might be turning at a different speed. Synchronizing rings were developed to make operating a manual transmission easier and to eliminate the terrible grinding noise that used to happen when the teeth of the dog clutch would clatter against the gear wheels.

All of this happens in an instant. Once you take your foot off the clutch pedal, energy is able to travel from the engine, through the transmission, and to the drive wheels, propelling your vehicle forward. As the engine approaches the limits of its RPM band, you shift up to a higher gear ratio in order to stay within the most effective range.


That wraps up our explanation of a manual transmission. If you’re more of a visual learner (don’t worry, we are, too), we’ve embedded a couple of videos below that will show you all the moving parts. Sites like HowStuffWorks are also great about providing details and diagrams.

The next part of this series will explain how automatic transmissions work, and check back later for the final part when we compare manuals and automatics.

If you’re a manual enthusiast, let us know the next time you call or visit one of our dealerships. Every Leith employee would love to help you into any manual transmission vehicle in our inventory.

Great visualization, funny accent.

Fantastic old-school explanation.

Finally, a Lego representation. Because it’s awesome.

Tags: Videos
Posted in Tutorials | Comments Off on How a Manual Transmission Works


Manual transmission

"Downshifting" redirects here. For the social concept, see Downshifting (lifestyle).

Type of transmission used in motor vehicle applications

Manual transmission for a four-wheel-drive vehicle- viewed from the engine side
Internals of a manual transmission for a front-wheel-drive vehicle

A manual transmission (MT), also known as manual gearbox, standard transmission in Canada and the United Kingdom or stick shift in the United States, is a multi-speed motor vehicletransmission system, where gear changes require the driver to manually select the gears by operating a gear stick and clutch (which is usually a foot pedal for cars or a hand lever for motorcycles).

Early automobiles used sliding-mesh manual transmissions with up to three forward gear ratios. Since the 1950s, constant-mesh manual transmissions have become increasingly commonplace and the number of forward ratios has increased to 5-speed and 6-speed manual transmissions for current vehicles.

The alternative to a manual transmission is an automatic transmission; common types of automatic transmissions are the hydraulic automatic transmission (AT), and the continuously variable transmission (CVT), whereas the automated manual transmission (AMT) and dual-clutch transmission (DCT) are internally similar to a conventional manual transmission, but are shifted automatically.

Alternately, there are transmissions which facilitate manual clutch operation, but the driver's input is still required to manually change gears; namely semi-automatic transmissions. These systems are based on the design of a conventional manual transmission, with a gear shifter, and are mechanically similar to a conventional manual transmission, with the driver's control and input still required for manually changing gears (like with a standard manual transmission), but the clutch system is completely automated, and the mechanical linkage for the clutch pedal is completely replaced by an actuator, servo, or solenoid and sensors, which operate the clutch system automatically, when the driver touches or moves the gearshift. This removes the need for a physical clutch pedal.


A manual transmission requires the driver to operate the gear stick and clutch in order to change gears (unlike an automatic transmission or semi-automatic transmission, where one (typically the clutch) or both of these functions are automated). Most manual transmissions for cars allow the driver to select any gear ratio at any time, for example shifting from 2nd to 4th gear, or 5th to 3rd gear. However, sequential manual transmissions, which are commonly used in motorcycles and racing cars, only allow the driver to select the next-higher or next-lower gear.

In a vehicle with a manual transmission, the flywheel is attached to the engine's crankshaft, therefore rotating at engine speed. A clutch sits between the flywheel and the transmission input shaft, controlling whether the transmission is connected to the engine (clutch engaged- the clutch pedal is not being pressed) or not connected to the engine (clutch disengaged- the clutch pedal is being pressed down). When the engine is running and the clutch is engaged (i.e., clutch pedal up), the flywheel spins the clutch plate and hence the transmission.

The design of most manual transmissions for cars is that gear ratios are selected by locking selected gear pairs to the output shaft inside the transmission. This is a fundamental difference compared with a typical hydraulic automatic transmission, which uses an epicyclic (planetary) design, and a hydraulic torque converter. An automatic transmission that allows the driver to control the gear selection (such as shift paddles or "+/-" positions on the gear selector) is called a manumatic transmission, and is not considered a manual transmission. Some automatic transmissions are based on the mechanical build and internal design of a manual transmission but have added components (such as computer-controlled actuators and sensors) which automatically control the timing and speed of the gear shifts and clutch; this design is typically called an automated manual transmission (or sometimes a clutchless manual transmission).

Contemporary manual transmissions for cars typically use five or six forward gears ratios and one reverse gear, however, transmissions with between two and seven gears have been produced at times. Transmissions for trucks and other heavy equipment often have between eight and twenty-five gears,[citation needed] in order to keep the engine speed within the optimal power band for all typical road speeds. Operating such transmissions often uses the same pattern of shifter movement with a single or multiple switches to engage the next sequence of gears.

  • Manual transmissions in operation
  • Operation of a constant-mesh 4-speed manual transmission.

  • Non-synchronous "crash" gearbox; with sliding-mesh design. Used in older vehicles.

  • Operation of a constant-mesh 4-speed sequential manual transmission; commonly used in motorcycles and race cars.

  • 1936 film of automobile gearbox


1890s to 1940s[edit]

Many of the first automobiles were rear-engined, with a simple belt-drive functioning as a single-speed transmission. The 1891 Panhard et Levassor is considered a significant advance in automotive transmissions since it used a three-speed manual transmission.[2][3] This transmission, along with many similar designs that it inspired, was a non-synchronous (also called sliding-mesh) design where gear changes involved sliding the gears along their shafts so that the desired cogs became meshed. The driver was therefore required to use careful timing and throttle manipulation when shifting, so the gears would be spinning at roughly the same speed when engaged; otherwise, the teeth would refuse to mesh. This was difficult to achieve, so gear changes were often accompanied by grinding or crunching sounds, resulting in the gearboxes being nicknamed "crash boxes".[4] Even after passenger cars had switched to synchronous transmissions (i.e. with synchronizers), many transmissions for heavy trucks, motorcycles and racing cars remained non-synchronous, in order to withstand the forces required or provide a faster shift time.

1950s to 1980s[edit]

Top and side view of a typical manual transmission, in this case, a Ford Toploader, used in vehicles with external floor shifters.

The first car to use a manual transmission with synchromesh was the 1929 Cadillac,[5] however most cars continued to use non-synchronous transmissions until at least the 1950s. In 1947, Porsche patented the split ring synchromesh system, which went on the become the most common design for passenger cars.[6] The 1952 Porsche 356 was the first car to use a transmission with synchromesh on all forward gears.[7][8] In the early 1950s, most cars only had synchromesh for the shift from third gear to second gear (drivers' manuals in vehicles suggested that if the driver needed to shift from second to first, it was best to come to a complete stop beforehand).

Up until the late 1970s, most transmissions had three or four forward gear ratios, although five-speed manual transmissions were occasionally used in sports cars such as the 1948 Ferrari 166 Inter and the 1953 Alfa Romeo 1900 Super Sprint. Five-speed transmissions became widespread during the 1980s, as did the use of synchromesh on all forward gears.

1990s to present[edit]

Six-speed manual transmissions started to emerge in high-performance vehicles in the early 1990s, such as the 1990 BMW 850i and the 1992 Ferrari 456. The first 6-speed manual transmission was introduced in the 1967 Alfa Romeo 33 Stradale. The first 7-speed manual transmission was introduced in the 2012 Porsche 911 (991).[9]

In 2008, 75.2% of vehicles produced in Western Europe were equipped with manual transmission, versus 16.1% with automatic and 8.7% with other.[10]


16-speed (2x4x2) ZF16S181 — opened transmission housing (2x4x2)
16S181 — opened planetaryrange housing (2x4x2)


A manual transmission has several shafts with various gears and other components attached to them. Most modern passenger cars use 'constant-mesh' transmissions consisting of three shafts: an input shaft, a countershaft (also called a layshaft) and an output shaft.[11]

The input shaft is connected to the engine and spins at engine speed whenever the clutch is engaged.[12] The countershaft has gears of various sizes, which are permanently meshed with the corresponding gear on the input shaft.[13] The gears on the output shaft are also permanently meshed with a corresponding gear on the countershaft, however, the output shaft gears are able to rotate independently of the output shaft itself (through the use of bearings located between the gears and the shaft).[14] Through the use of collars (operated using the shift rods), the speed of the output shaft becomes temporarily locked to the speed of the selected gear.[15] Some transmission designs— such as in the Volvo 850 and S70— have two countershafts, both driving an output pinion meshing with the front-wheel-drive transaxle's ring gear. This allows for a narrower transmission since the length of each countershaft is halved compared with one that contains four gears and two shifters.

The fixed and free gears can be mounted on either the input or output shaft or both. For example, a five-speed transmission might have the first-to-second selectors on the countershaft, but the third-to-fourth selector and the fifth selector on the main shaft. This means that when the vehicle is stopped and idling in neutral with the clutch engaged and the input shaft spinning, the third-, fourth-, and fifth-gear pairs do not rotate.

When neutral is selected, none of the gears on the output shaft are locked to the shaft, allowing the input and output shafts to rotate independently. For reverse gear, an idler gear is used to reverse the direction in which the output shaft rotates. In many transmissions, the input and output shafts can be directly locked together (bypassing the countershaft) to create a 1:1 gear ratio which is referred to as direct-drive.

In a transmission for longitudinal engined vehicles (e.g. most rear-wheel-drive cars), it is common for the input shaft and output shaft to be located on the same axis, since this reduces the torsional forces to which the transmission casing must withstand. The assembly consisting of both the input and output shafts is referred to as the main shaft (although sometimes this term refers to just the input shaft or output shaft). Independent rotation of the input and output shafts is made possibly by one shaft being located inside the hollow bore of the other shaft, with a bearing located between the two shafts.

In a transmission for transverse engined vehicles (e.g., front-wheel-drive cars), there are usually only two shafts: input and countershaft (sometimes called input and output). The input shaft runs the whole length of the gearbox, and there is no separate input pinion. These transmissions also have an integral differential unit, which is connected via a pinion gear at the end of the counter/output shaft.

  • Gear selection in a constant-mesh transmission
  • First gear (blue, to back)

  • Second gear (blue, to front)

  • Third gear (purple, to back)

  • Fourth gear (purple, to front)

Dog clutch[edit]

In a modern 'constant-mesh' manual transmission, the gear teeth are permanently in contact with each other, and dog clutches (sometimes called dog teeth) are used to select the gear ratio for the transmission. When the dog clutches for all gears are disengaged (i.e. when the transmission is in neutral), all of the gears are able to spin freely around the output shaft. When the driver selects a gear, the dog clutch for that gear is engaged (via the gear selector rods), locking the transmission's output shaft to a particular gear set. This means the output shaft rotates at the same speed as the selected gear, thus determining the gear ratio of the transmission.[16]

The dog clutch is a sliding selector mechanism that sits around the output shaft. It has teeth to fit into the splines on the shaft, forcing that shaft to rotate at the same speed as the gear hub. However, the clutch can move back and forth on the shaft, to either engage or disengage the splines. This movement is controlled by a selector fork that is linked to the gear lever. The fork does not rotate, so it is attached to a collar bearing on the selector. The selector is typically symmetric: it slides between two gears and has a synchromesh and teeth on each side in order to lock either gear to the shaft. Unlike some other types of clutches (such as the foot-operated clutch of a manual-transmission car), a dog clutch provides non-slip coupling and is not suited to intentional slipping.


In order to provide smooth gearshifts without requiring the driver to manually match the engine revs for each gearshift, most modern passenger car transmissions use 'synchromesh' (also called 'synchronizer rings') on the forward gears. These devices automatically match the speed of the input shaft with that of the gear being selected, thus removing the need for the driver to use techniques such as double-clutching. The synchromesh transmission was invented in 1919 by Earl Avery Thompson and first used on production cars by Cadillac in 1928.[17]

The need for synchromesh in a constant-mesh transmission is that the dog clutches require the input shaft speed to match that of the gear being selected; otherwise, the dog teeth will fail to engage and a loud grinding sound will be heard as they clatter together. Therefore, to speed up or slow down the input shaft as required, cone-shaped brass synchronizer rings are attached to each gear. When the driver moves the gearshift lever towards the next gear, these synchronizer rings press on the cone-shaped sleeve on the dog collar so that the friction forces can reduce the difference in rotational speeds.[18] Once these speeds are equalized, the dog clutch can engage, and thus the new gear is now in use. In a modern gearbox, the action of all of these components is so smooth and fast it is hardly noticed. Many transmissions do not include synchromesh on the reverse gear (see Reverse gear section below).

The synchromesh system must also prevent the collar from bridging the locking rings while the speeds are still being synchronized. This is achieved through 'blocker rings' (also called 'baulk rings'). The synchro ring rotates slightly because of the frictional torque from the cone clutch. In this position, the dog clutch is prevented from engaging. Once the speeds are synchronized, friction on the blocker ring is relieved and the blocker ring twists slightly, bringing into alignment certain grooves or notches that allow the dog clutch to fall into the engagement.

Common metals for synchronizer rings are brass and steel, and are produced either by forging or sheet metal shaping. The latter involves stamping the piece out of a sheet metal strip and then machining to obtain the exact shape required. The rings are sometimes coated with anti-wear linings (also called 'friction linings') made from molybdenum, iron, bronze or carbon (with the latter usually reserved for high-performance transmissions due to their high cost).[19]

Mechanical wear of the synchronizer rings and sleeves can cause the synchromesh system to become ineffective over time. These rings and sleeves have to overcome the momentum of the entire input shaft and clutch disk during each gearshift (and also the momentum and power of the engine, if the driver attempts a gearshift without fully disengaging the clutch). Larger differences in speed between the input shaft and the gear require higher friction forces from the synchromesh components, potentially increasing their wear rate.

Reverse gear[edit]

Even in modern transmissions where all of the forward gears are in a constant-mesh configuration, often the reverse gear uses the older sliding-mesh ("crash 'box") configuration. This means that moving the gearshift lever into reverse results in gears moving to mesh together. Another unique aspect of the reverse gear is that it consists of two gears— an idler gear on the countershaft and another gear on the output shaft— and both of these are directly fixed to the shaft (i.e. they are always rotating at the same speed as the shaft). These gears are usually spur gears with straight-cut teeth which— unlike the helical teeth used for forward gear— results in a whining sound as the vehicle moves in reverse.

When reverse gear is selected, the idler gear is physically moved to mesh with the corresponding gears on the input and output shafts. To avoid grinding as the gears begin to the mesh, they need to be stationary. Since the input shaft is often still spinning due to momentum (even after the car has stopped), a mechanism is needed to stop the input shaft, such as using the synchronizer rings for 5th gear. However, some vehicles do employ a synchromesh system for the reverse gear, thus preventing possible crunching if reverse gear is selected while the input shaft is still spinning.[20]

Most transmissions include a lockout mechanism to prevent reverse gear from being accidentally selected while the car is moving forwards. This can take the form of a collar underneath the gear knob which needs to be lifted or requiring extra force to push the gearshift lever into the plane of reverse gear.

Non-synchronous transmission[edit]

3-speed non-synchronous "crash" gearbox; used in automobiles pre-1950s and semi-trailer trucks

Main article: non-synchronous transmission

An alternate design of transmission that is used in older cars, trucks, and tractors, is a non-synchronous transmission (also known as a crash gearbox). Non-synchronous transmissions use a sliding-mesh (or constant-mesh, in later years) design and have the nickname "crash" because the difficulty in changing gears can lead to gear shifts accompanied by crashing/crunching noises.


Exploded view of a flywheel, friction disk, and clutch kit

Main article: Clutch

Vehicles with manual transmissions use a clutch to manage the linkage between the engine and the transmission, and decouple the transmission from the engine during gearshifts and when the vehicle is stationary. Without a clutch, the engine would stall any time the vehicle stopped, and changing gears would be difficult (deselecting a gear while the transmission requires the driver to adjust the throttle so that the transmission is not under load, and selecting a gear requires the engine RPM to be at the exact speed that matches the road speed for the gear being selected).

Most motor vehicles use a pedal to operate the clutch; except for motorcycles, which usually have a clutch lever on the left handlebar.

Gear stick[edit]

Main article: Gear stick

Floor-mounted gear stick in a passenger car
Common shift pattern for a 5-speed transmission

In most vehicles with a manual transmission, the driver selects gears by manipulating a lever called a gear stick (also called a gearshift, gear lever or shifter). In most automobiles, the gear stick is located on the floor between the driver and front passenger, however, some cars have a gear stick that is mounted to the steering column or center console.

The movement of the gear stick is transferred (via solid linkages or cables) to the selector forks within the transmission.

Motorcycles typically employ sequential manual transmissions, although the shift pattern is modified slightly for safety reasons. Gear selection is usually via the left-foot (or, on older motorcycles; right-foot) shift lever with a layout of 1 - N - 2 - 3 - 4 - 5 - 6.

External overdrive[edit]

Main article: Overdrive

In the 1950s, 1960s, and 1970s, fuel-efficient highway cruising with low engine speed was in some cases enabled on vehicles equipped with 3- or 4-speed transmissions by means of a separate overdrive unit in or behind the rear housing of the transmission. This was actuated either manually while in high gear by throwing a switch or pressing a button on the gearshift knob or on the steering column, or automatically by momentarily lifting the foot from the accelerator with the vehicle traveling above a certain road speed. Automatic overdrives were disengaged by flooring the accelerator, and a lockout control was provided to enable the driver to disable overdrive and operate the transmission as a normal (non-overdrive) transmission.[21]

The term 'overdrive' is also used to describe a gear with a ratio of less than one (e.g., if the top gear of the transmission has a ratio of 0.8:1).

Push starting[edit]

Vehicles with a manual transmission can often be push started when the starter motor is not operational, such as when the car has a dead battery.

When push-starting, the energy generated by the wheels moving on the road is transferred to the driveshaft, then the transmission, and eventually the crankshaft. When the crankshaft spins as a result of the energy generated by the rolling of the vehicle, the motor is cranked over. This simulates what the starter is intended for and operates in a similar way to crank handles on very old cars from the early 20th century, with the cranking motion being replaced by the pushing of the car.

Driving techniques[edit]

Vehicles with manual transmissions, and an experienced driver, can accelerate more efficiently than automatic vehicles. This is because manual transmissions allow the driver to choose specific rpm/power to the tires while pushing the clutch and modulating the power output during clutch release to account for weight transfer, tire wear, temperature, and road conditions.[22] Automatic transmissions do not allow to select rpm during shifting or modulating power release to the tires after the gears have shifted. These abilities enable an experienced driver to fully use the available grip, maximize acceleration, and reduce (or promote) wheel spinning.

Recently, many automatic transmissions have included more gear ratios than their manual counterparts.[23][24]

Driving a vehicle with a manual transmission is more difficult than an automatic transmission for several reasons. Firstly, the clutch pedal is an extra control mechanism to operate and in some cases, a "heavy clutch" requires significant force to be operated (this can also preclude some people with injuries or impairments from driving manual transmission vehicles). The operation of the gearstick— another function that is not required on automatic transmission cars— means that the driver must take one hand off the steering wheel while changing gears. Another challenge is that smooth driving requires co-ordinated timing of the clutch, accelerator, and gearshift inputs. Lastly, a car with an automatic transmission obviously does not require the driver to make any decisions about which gear to use at any given time. On the other hand, being able to choose a specific gear and engine rpm setting manually gives the driver full control of the torque applied by the tires, a critical ability for racing, and important for spirited driving.

In some countries, a driving license issued for vehicles with an automatic transmission is not valid for driving vehicles with a manual transmission, but a license for manual transmissions covers both.[25]

Hill starts[edit]

Starting from a stationary position is a challenge in a manual transmission car, due to the extra force required to accelerate the vehicle up the hill and the potential for the car to roll backward in the time it takes to move the driver's foot from the brake pedal to the accelerator pedal (to increase the engine RPM before letting out the clutch). The traditional method of hill starts in a manual transmission car is to use the parking brake (also called "handbrake", "emergency brake", or "e-brake") to hold the vehicle stationary. This means that the driver's right foot is not needed to operate the brake pedal, freeing it up to be used on the throttle pedal instead. Once the required engine RPM is obtained, the driver can release the clutch, also releasing the parking brake as the clutch engages.

A device called the hill-holder was introduced on the 1936 Studebaker. Many modern vehicles use an electronically actuated parking brake, which often includes a hill-holder feature whereby the parking brake is automatically released as the driven wheels start to receive power from the engine.[26]

Other driving techniques[edit]

  • Rev-matching is an effective way to downshift gears in a car. This is especially useful on a track where optimum acceleration is needed. Rev-matching can also take some stress off the clutch, as it will be doing less work in matching the engine speed to the wheels.[27]
  • Double-clutching can be advantageous for smoothly up shifting in order to accelerate, and when done correctly it prevents wear on the "synchros" which normally equalize transmission input and output speeds to allow downshifting.
  • Heel-and-toe shifting is an advanced driving technique used mostly in performance driving with a manual gearbox, although some drivers use it on the road in everyday conditions in the interest of effectiveness. This technique allows the driver to increase the engine's rpm/power during the braking phase of a curve in preparation for the exit/acceleration phase.
  • Rowing is the technique of downshifting more than one gear along with the heel-and-toe technique to provide engine braking and smoother deceleration/braking while in the intermediate gears. This provides for maximum braking when going from top gear to a much lower gear, and optimal engine RPM for exiting the corner.

Truck transmissions[edit]

Some trucks have transmissions that look and behave like ordinary consumer vehicle transmissions—these transmissions are used on lighter trucks, typically have up to 6 gears, and usually have synchromesh.

For trucks needing more gears, the standard "H" pattern can be complicated for some truck drivers, so additional controls are used to select additional gears. The "H" pattern is retained, then an additional control selects among alternatives. In older trucks, the control is often a separate lever mounted on the floor or more recently a pneumatic switch mounted on the "H" lever; in newer trucks, the control is often an electrical switch mounted on the "H" lever. Multi-control transmissions are built in much higher power ratings but rarely use synchromesh.

There are several common alternatives for the shifting pattern. The standard types are:

  • Range transmissions use an "H" pattern through a narrow range of gears, then a "range" control shifts the "H" pattern between high and low ranges. For example, an 8-speed range transmission has an H shift pattern with four gears. The first through fourth gears are accessed when a low range is selected. To access the fifth through eighth gears, the range selector is moved to high range, and the gear lever again shifted through the first through fourth gear positions. In high range, the first gear position becomes fifth, the second gear position becomes sixth, and so on.
  • Splitter transmissions use an "H" pattern with a wide range of gears, and the other selector splits each sequential gear position in two: First gear is in the first position/low split, second gear is in the first position/high split, third gear is in second position/low split, fourth gear is in second position/high split, and so on.
  • Range-Splitter transmissions combine range-splitting and gear-splitting. This allows even more gear ratios. Both a range selector and a splitter selector are provided.

Although there are many gear positions, shifting through gears usually follows a regular pattern. For example, a series of up shifts might use "move to splitter direct; move to splitter overdrive; move the shift lever to No. 2 and move splitter to underdrive; move splitter to direct; move splitter to overdrive; move the shifter to No. 3 and move splitter to underdrive"; and so on. In older trucks using floor-mounted levers, a bigger problem is common gear shifts require the drivers to move their hands between shift levers in a single shift, and without synchromesh, shifts must be carefully timed or the transmission will not engage. For this reason, some splitter transmissions have an additional "under under" range, so when the splitter is already in "under" it can be quickly downshifted again, without the delay of a double shift.

Modern truck transmissions are most commonly "range-splitter". The most common 13-speed has a standard H pattern, and the pattern from the left upper corner is as follows: R, down to L, over and up to 1, down to 2, up and over to 3, down to 4. The "butterfly" range lever in the center front of the knob is flipped up to high range while in 4th, then shifted back to 1. The 1 through 4 positions of the knob is repeated. Also, each can be split using the thumb-actuated under-overdrive lever on the left side of the knob while in high range. The "thumb" lever is not available in low range, except in 18 speeds; 1 through 4 in the low range can be split using the thumb lever and L can be split with the "Butterfly" lever. L cannot be split using the thumb lever in either the 13- or 18-speed. The 9-speed transmission is like a 13-speed without the under-overdrive thumb lever.

Truck transmissions use many physical layouts. For example, the output of an N-speed transmission may drive an M-speed secondary transmission, giving a total of N*M gear combinations. Transmissions may be in separate cases with a shaft in between; in separate cases bolted together; or all in one case, using the same lubricating oil. The second transmission is often called a "Brownie" or "Brownie box" after a popular brand. With a third transmission, gears are multiplied yet again, giving greater range or closer spacing. Some trucks thus have dozens of gear positions, although most are duplicates. Sometimes a secondary transmission is integrated with the differential in the rear axle, called a "two-speed rear end". Two-speed differentials are always splitters. In newer transmissions, there may be two counter shafts, so each main shaft gear can be driven from one or the other countershaft; this allows construction with short and robust countershafts, while still allowing many gear combinations inside a single gear case.

Heavy-duty transmissions are mostly non-synchromesh. Sometimes synchromesh adds weight that could be payload, and is one more thing to fail, and drivers spend thousands of hours driving so can take the time to learn to drive efficiently with a non-synchromesh transmission. Float shifting (also called "floating gears") is changing gears without disengaging the clutch, usually on a non-synchronized transmission used by large trucks. Since the clutch is not used, it is easy to mismatch speeds of gears, and the driver can quickly cause major (and expensive) damage to the gears and the transmission.

Heavy trucks are usually powered with diesel engines. Diesel truck engines from the 1970s and earlier tend to have a narrow power band, so they need many close-spaced gears. Starting with the 1968 Maxidyne, diesel truck engines have increasingly used turbochargers and electronic controls that widen the power band, allowing fewer and fewer gear ratios. As of 2021, fleet operators often use 9, 10, 13, or 18-speed transmissions, but automated manual transmissions are becoming more common on heavy vehicles, as they can improve efficiency and drivability, reduce the barrier to entry for new drivers, and may improve safety by allowing the driver to concentrate on road conditions.[citation needed]


Manual transmissions are lubricated with gear oil (or engine oil in some vehicles) which must be changed periodically in some vehicles, although not as frequently as the fluid in an automatic transmission. Gear oil has a characteristic aroma because it contains added sulfur-bearing anti-wear compounds. These compounds are used to reduce the high sliding friction by the helical gear cut of the teeth (this cut eliminates the characteristic whine of straight-cut spur gears). On motorcycles with "wet" clutches (clutch is bathed in engine oil), there is usually nothing separating the lower part of the engine from the transmission, so the same oil lubricates both the engine and transmission.

See also[edit]


External Links[edit]


Transmission diagram manual

Don't be shy about modest rhymes, but be afraid to be alone with. Yourself, is a current self-valuable lot. She missed the times when people thought for themselves. However, now they bought thoughts at her auction, andwhich means that she was no longer in danger of death from hunger.

Manual transmission full rebuild and assembly - step by step how to

What about wet panties. Which we washed right in the lake. Fortunately, I took several pieces. When I left for work, I took a shift with me. "She washed the worn-out linen.

Similar news:

With longing thought Lilith and was not mistaken. - Miss Evans, you have another complaint. the doctor began, do you know from whom.

5366 5367 5368 5369 5370